Abstract
Wall-Modelled Large Eddy Simulations (LES) are conducted using a high-resolution CABARET method, accelerated on Graphics Processing Units (GPUs), for a canonical configuration that includes a flat plate within the linear hydrodynamic region of a single-stream jet. This configuration was previously investigated through experiments at the University of Bristol. The simulations investigate jets at acoustic Mach numbers of 0.5 and 0.9, focusing on two types of nozzle geometries: round and chevron nozzles. These nozzles are scaled-down versions (3:1 scale) of NASA’s SMC000 and SMC006 nozzles. The parameters from the LES, including flow and noise solutions, are validated by comparison with experimental data. Notably, the mean flow velocity and turbulence distribution are compared with NASA’s PIV measurements. Additionally, the near-field and far-field pressure spectra are evaluated in comparison with data from the Bristol experiments. For far-field noise predictions, a range of techniques are employed, ranging from the Ffowcs Williams–Hawkings (FW–H) method in both permeable and impermeable control surface formulations, to the trailing edge scattering model by Lyu and Dowling, which is based on the Amiet trailing edge noise theory. The permeable control surface FW–H solution, incorporating all jet mixing and installation noise sources, is within 2 dB of the experimental data across most frequencies and observer angles for all considered jet cases. Moreover, the impermeable control surface FW–H solution, accounting for some quadrupole noise contributions, proves adequate for accurate noise spectra predictions across all frequencies at larger observer angles. The implemented edge-scattering model successfully captures the mechanism of low-frequency sound amplification, dominant at low frequencies and high observer angles. Furthermore, this mechanism is shown to be effectively consistent for both M=0.5\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$M=0.5$$\\end{document} and M=0.9\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$M=0.9$$\\end{document}, and for jets from both round and chevron nozzles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.