Hydrogen adsorption performance and mechanism upon cycling of the upscaled Ni-doped hierarchical carbon scaffold (HCS) are investigated. Upon 22 hydrogen ad/desorption cycles (T = 25–50 °C and p (H2) = 1–50 bar), the upscaled Ni-doped HCS shows excellent cycling stability with gravimetric capacity of up to 1.51 wt % H2. This is due to mechanical stability of HCS and good distribution of Ni nanoparticles. Hydrogen adsorption mechanism of Ni-doped HCS upon cycling is experimentally and theoretically characterized. Besides dissociative adsorption onto the surface, hydrogen diffusion into the lattice structure of Ni is observed. The latter enhances with the number of ad/desorption cycles and alters the electron sharing mechanisms between Ni and H during adsorption.
Read full abstract