Production of hydrogen by means of renewable energy sources is a way to eliminate dependency of the system on the electric grid. This study is based on a technique involving coupling of an oxyhydrogen (HHO) electrolyzer with solar PV to produce clean HHO gas as a fuel. One of objectives of this study was to develop a strategy to make the electrolyzer independent of other energy sources and work as a standalone system based on solar PV only. A DC-DC buck convertor is used with an algorithm that can track the maximum power and can be fed to the electrolyzer by PV while addressing its intermittency. The electrolyzer is considered to be an electrical load that is connected to solar PV by means of a DC-DC convertor. An algorithm is designed for this DC-DC convertor that allows maximization and control of power transferred from solar PV to the electrolyzer to produce the maximum HHO gas. This convertor is also responsible for operating the electrolyzer in its optimum operating region to avoid overheating. The DC-DC converter has been tested under simulated indoor conditions and uncontrolled outdoor conditions. Analysis of this DC-DC convertor based on maximum power tracking algorithm showed 94% efficiency.
Read full abstract7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access