Abstract
This introductory study comes up with an innovative idea of using Hydroxyl gas as a fuel performance enhancer to reduce the natural sources and the overuse of fossil fuel resulting in increased pollution levels. Many researchers have used HHO gas to analyze gasoline and diesel in internal combustion engines. The main challenges of using HHO gas in engines have been identified as system complexity, safety, cost, and electrolysis efficiency. This article focuses on different performance reports and the emission characteristics of a compression ignition engine. As opposed to general diesel, this study found that using HHO gas improved brake power and torque. In all cases, an increase in braking thermal efficiency can be observed. This was due to the presence of hydrogen in HHO gas with higher calorific value than fossil fuels. At the same time, the fuel consumption unit of the engine was reduced, and the combined impact of hydrogen and oxygen helped to achieve complete combustion and improved the combustion capacity of the fuel when HHO gas was injected. The addition of HHO gas also improved the Brake Power (BP), Brake Torque (BT), Brake Specific Fuel Consumption (BSFC), and thermal efficiency while simultaneously reducing CO and HC formation. The rise in CO2 emissions represented the completion of combustion. Therefore, the usage of HHO gas in the Compression Ignition (CI) engine improved the engine performance and exhaust emissions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Advanced Research in Fluid Mechanics and Thermal Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.