Satellite DNAs have been isolated from the monocotyledonous plants Scilla siberica, S. amoena, S. ingridae (all are highly GC-rich), and S. mischtschenkoana by using the Ag+ −Cs2SO4 density centrifugation technique. Hybridization in situ has been performed with 3H-cRNA to these satellite DNAs in all four species. In each species, the endogenous satellite DNA is located mainly in intercalary and major heterochromatin bands associated with terminal regions and nucleolar organizer regions (NORs) but not in centromeric regions. Patterns observed after cross-species hybridization show a high degree of satellite DNA homology between S. siberica, S. amoena, and S. ingridae. By contrast, satellite DNA of S. mischtschenkoana consists largely of different, non homologous DNA sequences, with two exceptions: (i) the NORs of all four species contain similar satellite sequences, and (ii) a strong homology exists between the satellite DNA of S. mischtschenkoana and centromeric DNA of S. siberica but not with those of S. amoena and S. ingridae. — Heterochromatin has also been characterized by the AT-specific fluorochromes quinacrine (Q) and DAPI and the GC-specific agent chromomycin A3 (CMA3), in combination with two counterstaining techniques. While CMA3-fluorescence is largely in agreement with data on base composition and location of the specific satellite DNAs, the results with Q and DAPI are conflicting. Prolonged fixation has been found to change the fluorescence character in certain instances, indicating that other factors than the base sequence of the DNA also play a role in fluorochrome staining of chromosomes. The results are discussed in relation to the taxonomy and phylogeny of the four species.
Read full abstract