Benign prostate hyperplasia (BPH) is one of the well-known urological neoplasms common in males with an increasing number of associated deaths in aging males. It causes uncomfortable urinary symptoms, including urine flow blockage, and may cause bladder, urinary tract or kidney problems. The histopathological and clinical knowledge regarding BPH is limited. In the present study, an in silico approach was applied that uses genome-scale microarray expression data to discover a wide range of protein-protein interactions in addition to focusing on specific genes responsible for BPH to develop prognostic biomarkers. Various genes that were differentially expressed in BPH were identified. Gene and functional annotation clusters were determined and an interaction analysis with disease phenotypes of BPH was performed, as well as an RNA tissue specificity analysis. Furthermore, a molecular docking study of certain short-listed gene biomarkers, namely anterior gradient 2 (AGR2; PDB ID: 2LNT), steroid 5α-reductase 2 (PDB ID: 6OQX), zinc finger protein 3 (PDB ID: 5T00) and collagen type XII α1 chain (PDB ID: 1U5M), was performed in order to identify alternative Chinese herbal agents for the treatment of BPH. Data from the present study revealed that AGR2 receptor (PDB ID: 2LNT) and berberine (Huang Bo) form the most stable complex and therefore may be assessed in further pharmacological studies for the treatment of BPH.
Read full abstract