Organic compounds can be used as temperature calibrants in fast scanning calorimetry. Their advantages include ease of surface cleaning of the calorimetric chip and good thermal contact with the chip surface. Among several compounds tested, benzoic acid was identified as a convenient and reliable calibrant for temperatures below approximately 130 °C. However, organic calibrants often exhibit unusual heating rate dependencies of the onset temperatures of melting. This phenomenon can be semi-quantitatively explained by considering different heat flows within the sensor. Notably, the thermal resistance between the heater and thermopile, often overlooked, introduces an additional time constant that can sometimes result in a negative apparent thermal lag. In addition, the onset temperatures are influenced by factors such as sample position, thickness, surface wetting, and spreading. These factors limit the accuracy of transition temperature determinations to approximately ±1 K below 130 °C and ±5 K up to 220 °C.