Let A be a partition of the segment [0, 1] into a countable number of disjoint subsets of positive measure, let t∈L1(0,1), let Nt be the smallest rearrangement-invariant order ideal vector lattice in L1(0,1), containing t. In the paper one investigates the properties of the image E(Nt¦A) of the averaging operator with respect to A. In particular, one elucidates under what conditions there exists a function g, g∈L1(0,1), such that E(Nt¦A)⊂Ng. One formulates a generalization of the known Hardy-Littlewood inequality, namely Theorem E(t∣A)≺QE(t*∣A*), where ≺ is the Hardy-Littlewood preorder, t* and A* are the decreasing rearrangements of the function ¦t¦ and (in a special sense) of the partition A, while Q is an absolute constant, 1⩽Q⩽25. One formulates the problem of the smallest value of Q.
Read full abstract