Abstract

SynopsisIn 1979 Copson proved the following analogue of the Hardy-Littlewood inequality: if is a sequence of real numbers such that are convergent, where Δan = an+1 – an and Δ2an = Δ(Δan), then is convergent and the constant 4 being best possible. Equality occurs if and only if an = 0 for all n. In this paper we give a result that extends Copson's result to inequalities of the formwhere Mxn =–Δ(pn_l Δxn_l)+qnxn (n = 0, 1, …). The validity of such an inequality and the best possible value of the constant K are determined in terms of the analogue of the Titchmarsh-Weyl m-function for the difference equation Mxn = λwnxn (n = 0, 1, …).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.