Abstract
An extension of the Hardy-Littlewood inequality for rearrangements is established. It is used for giving several conditions of existence of a minimum for nonweakly-lower-semicontinuous functionals of the form $J(v) \! = \! \int_0^1f(x,v(x),v'(x)) dx$ with constraints on $v$ and $v'$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.