Excavation of subway tunnels in hard rock generates strong vibration waves that pose potential risks to the stability of surrounding structures. In this study, the discrete element method-finite difference method (DEM-FDM) coupling was adopted to build the model of tunnel structure-rock-pile, which was validated by field monitoring data. Then, the vibration response of piles under various pile-tunnel spacings was analyzed, revealing the occurrence of vibration peak rebound phenomena within certain distance ranges. The range of vibration effects was categorized. Furthermore, in shield tunneling construction, the energy induced by vibrations was mainly concentrated within the 50 Hz range. Low-frequency vibrations result in a wider effect range. The study also demonstrated that within a 1d (tunnel diameter) range of the pile-tunnel spacing, the vibration induced by shield tunneling construction had a more significant effect. As the pile-tunnel spacing increased, the piles transitioned from being subjected to bending forces to experiencing bending-shear forces. Finally, the vibration effects on the existing piles were evaluated under field working conditions. It also provided suggestions for construction based on the effects and laws of the pile dynamic response.