Global gyrokinetic particle simulations of reversed shear Alfvén eigenmode (RSAE) have been successfully performed and verified. We have excited the RSAE by initial perturbation, by external antenna, and by energetic ions. The RSAE excitation by antenna provides verifications of the mode structure, the frequency, and the damping rate. When the kinetic effects of the background plasma are artificially suppressed, the mode amplitude shows a near-linear growth. With kinetic thermal ions, the mode amplitude eventually saturates due to the thermal ion damping. The damping rates measured from the antenna excitation and from the initial perturbation simulation agree very well. The RSAE excited by fast ions shows an exponential growth. The finite Larmor radius effects of the fast ions are found to significantly reduce the growth rate. With kinetic thermal ions and electron pressure, the mode frequency increases due to the elevation of the Alfvén continuum by the geodesic compressibility. The nonperturbative contributions from the fast ions and kinetic thermal ions modify the mode structure relative to the ideal magnetohydrodynamic (MHD) theory. The gyrokinetic simulations have been benchmarked with extended hybrid MHD-gyrokinetic simulations.
Read full abstract