ETHYLENE-INSENSITIVE3 (EIN3) or EIN3-Like (EIL) proteins, play critical roles in integrating ethylene signaling and physiological regulation in plants by modulating the expression of various downstream genes, such as ethylene-response factors (ERFs). However, little is known about the characteristics of EIN3/EILs in the gymnosperm Ginkgo biloba. In the present study, a genome-wide comparative analysis of Ginkgo EIN3/EIL gene family was performed with those from an array of species, including bryophytes (Physcomitrella patens), gymnosperms (Cycas panzhihuaensis), and angiosperms (Arabidopsis thaliana, Gossypium raimondii, Gossypium hirsutum, Oryza sativa, and Brachypodium distachyon). Within the constructed phylogenetic tree for the 53 EIN3/EILs identified, 5 GbEILs from G. biloba, 2 PpEILs from P. patens, and 3 CpEILs from C. panzhihuaensis were assigned to one cluster, suggesting that their derivation occurred after the split of their ancestors and angiosperms. Although considerable divergence accumulated in amino acid sequences along with the evolutionary process, the specific EIN3_DNA-binding domains were evolutionarily conserved among the 53 EIN3/EILs. Collinearity analysis indicated that whole-genome or segmental duplication and subsequent purifying selection might have prompted the generation and evolution of EIN3/EIL multigene families. Based on the expression patterns of five GbEILs at the four developmental stages of Ginkgo ovules, one GbEIL gene (Gb_03292) was further investigated for its role in mediating ethylene signaling. The functional activity of Gb_03292 was closely related to ethylene signaling, as it complemented the triple response via ectopic expression in ein3eil1 double mutant Arabidopsis. Additionally, GbEIL likely modulates the expression of a Ginkgo ERF (Gb_15517) by directly binding to its promoter. These results demonstrated that the GbEIL gene could have participated in mediating ethylene signal transduction during ovule development in G. biloba. The present study also provides insights into the conservation of ethylene signaling across the gymnosperm G. biloba and angiosperm species.
Read full abstract