Abstract

A defining feature of angiosperms is double fertilization involving the female gametophyte central cell and formation of a nutrient-storing tissue called endosperm. The route for the evolutionary origin of endosperm from a gymnosperm ancestor, particularly the molecular steps involved, has remained elusive. Recently, the histidine kinase gene Cytokinin-Independent 1 (CKI1), an activator of cytokinin signaling, was described as a key to specification of the endosperm precursor central cell in Arabidopsis. Here, we have investigated the function and expression of a putative ortholog of CKI1 in the gymnosperm Ginkgo biloba. We demonstrate that Ginkgo CKI1 can partially rescue an Arabidopsis cki1 mutant and promote weak activation of the cytokinin signaling pathway in the Arabidopsis embryo sac, but does not confer central cell specification. Ginkgo CKI1 is expressed in both male and female gametophytes of Ginkgo. In the latter, it is expressed in the ventral canal cell, which is sister to the egg cell in the archegonium. As in Arabidopsis, Ginkgo CKI1 is not expressed in the egg cell. The similarities in expression patterns of CKI1 in Ginkgo and Arabidopsis female gametophytes suggest that extant gymnosperms possess an essential component of the molecular machinery required for angiosperm endosperm development, and provide new insights into endosperm origin from a gymnospermous ancestor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call