Abstract

Plant life cycles alternate between haploid gametophytes and diploid sporophytes. While regulatory factors determining male and female sexual morphologies have been identified for sporophytic reproductive organs, such as stamens and pistils of angiosperms, those regulating sex‐specific traits in the haploid gametophytes that produce male and female gametes and hence are central to plant sexual reproduction are poorly understood. Here, we identified a MYB‐type transcription factor, MpFGMYB, as a key regulator of female sexual differentiation in the haploid‐dominant dioicous liverwort, Marchantia polymorpha. MpFGMYB is specifically expressed in females and its loss resulted in female‐to‐male sex conversion. Strikingly, MpFGMYB expression is suppressed in males by a cis‐acting antisense gene SUF at the same locus, and loss‐of‐function suf mutations resulted in male‐to‐female sex conversion. Thus, the bidirectional transcription module at the MpFGMYB/SUF locus acts as a toggle between female and male sexual differentiation in M. polymorpha gametophytes. Arabidopsis thaliana MpFGMYB orthologs are known to be expressed in embryo sacs and promote their development. Thus, phylogenetically related MYB transcription factors regulate female gametophyte development across land plants.

Highlights

  • Plant life cycles alternate between haploid gametophytes and diploid sporophytes

  • While regulatory factors determining male and female sexual morphologies have been identified for sporophytic reproductive organs, such as stamens and pistils of angiosperms, those regulating sex-specific traits in the haploid gametophytes that produce male and female gametes and are central to plant sexual reproduction are poorly understood

  • Mapoly0001s0061 FEMALE GAMETOPHYTE MYB (MpFGMYB) is expressed in females and its loss resulted in female-to-male sex conversion

Read more

Summary

Introduction

While regulatory factors determining male and female sexual morphologies have been identified for sporophytic reproductive organs, such as stamens and pistils of angiosperms, those regulating sex-specific traits in the haploid gametophytes that produce male and female gametes and are central to plant sexual reproduction are poorly understood. We identified a MYB-type transcription factor, MpFGMYB, as a key regulator of female sexual differentiation in the haploid-dominant dioicous liverwort, Marchantia polymorpha. MpFGMYB is expressed in females and its loss resulted in female-to-male sex conversion. MpFGMYB expression is suppressed in males by a cis-acting antisense gene. SUF at the same locus, and loss-of-function suf mutations resulted in male-to-female sex conversion. The bidirectional transcription module at the MpFGMYB/SUF locus acts as a toggle between female and male sexual differentiation in

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call