Abstract

The manner in which the area of the leaf lamina (A) scales with respect to the dry mass of the lamina (M) is an important functional trait that is correlated with whole-plant growth rates and habitat preferences across diverse species. However, the extent to which the scaling between these two variables differs among leaves collected from different types of shoots within the canopy of a tree is poorly understood. Should they exist, significant differences in the A vs. M scaling relationship within canopies would raise a number of important questions, in particular what constitutes an adequate sampling procedure to determine the whole-canopy A vs. M relationship. To address this issue, we used a large data set representing 13 biologically distinct categories of leaves sampled from mega- and microsporangiate trees of the dioecious gymnosperm Ginkgo biloba. Analyses of the data for these 13 categories of leaves identify seven statistically significantly different modes of A vs. M scaling that result in significant differences in how specific leaf area (SLA) changes as M varies within the canopies of Ginkgo. These results indicate that the protocols used to sample leaves for the analysis of foliar functional traits such as specific leaf area need to acknowledge and cope with the effects of leaf and shoot polymorphisms on the quantification of functional traits (and on the construction and testing of hypotheses about these traits).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.