Abstract

BackgroundThe involvement of MADS-box genes of the AGAMOUS lineage in the formation of both flowers and fruits has been studied in detail in Angiosperms. AGAMOUS genes are expressed also in the reproductive structures of Gymnosperms, yet the demonstration of their role has been problematic because Gymnosperms are woody plants difficult to manipulate for physiological and genetic studies. Recently, it was shown that in the gymnosperm Ginkgo biloba an AGAMOUS gene was expressed throughout development and ripening of the fleshy fruit-like structures produced by this species around its seeds. Such fleshy structures are evolutionarily very important because they favor the dispersal of seeds through endozoochory. In this work a characterization of the Ginkgo gene was carried out by over-expressing it in tomato.ResultsIn tomato plants ectopically expressing the Ginkgo AGAMOUS gene a macroscopic anomaly was observed only in the flower sepals. While the wild type sepals had a leaf-like appearance, the transgenic ones appeared connately adjoined at their proximal extremity and, concomitant with the development and ripening of the fruit, they became thicker and acquired a yellowish-orange color, thus indicating that they had undergone a homeotic transformation into carpel-like structures. Molecular analyses of several genes associated with either the control of ripening or the ripening syndrome in tomato fruits confirmed that the transgenic sepals behaved like ectopic fruits that could undergo some ripening, although the red color typical of the ripe tomato fruit was never achieved.ConclusionsThe ectopic expression of the Ginkgo AGAMOUS gene in tomato caused the homeotic transformation of the transgenic sepals into carpel-like structures, and this showed that the gymnosperm gene has a genuine C function. In parallel with the ripening of fruits the related transgenic sepals became fleshy fruit-like structures that also underwent some ripening and such a result indicates that this C function gene might be involved, together with other gens, also in the development of the Ginkgo fruit-like structures. It seems thus strengthened the hypothesis that AGAMOUS MADS-box genes were recruited already in Gymnosperms for the development of the fleshy fruit habit which is evolutionarily so important for the dispersal of seeds.Electronic supplementary materialThe online version of this article (doi:10.1186/s12862-015-0418-x) contains supplementary material, which is available to authorized users.

Highlights

  • The involvement of MADS-box genes of the AGAMOUS lineage in the formation of both flowers and fruits has been studied in detail in Angiosperms

  • The ectopic expression of the Ginkgo AG gene caused the homeotic transformation of the normally leafy tomato sepals into fleshy fruit-like structures that underwent some ripening, as judged by their yellowish-orange color and by the expression of several ripening-related genes. These results show that the Ginkgo AG gene has a C function and is involved in the formation of fleshy fruit-like structures

  • The Ginkgo AGAMOUS gene (GBM5) studied in this work had already been described by Jager et al [17], and its detailed expression in various tissues and during the development of the fleshy sarcotesta produced by this species around its seeds has recently been published by Lovisetto et al [16]

Read more

Summary

Introduction

It was shown that in the gymnosperm Ginkgo biloba an AGAMOUS gene was expressed throughout development and ripening of the fleshy fruit-like structures produced by this species around its seeds. Such fleshy structures are evolutionarily very important because they favor the dispersal of seeds through endozoochory. In tomato a detailed analysis of the functional roles played by each representative of the two AG sublineages (i.e., the euAG TAG1 and the PLE TAGL1 genes, respectively) demonstrated that both genes are involved in the early stages of fruit development, while it is TAGL1 to be especially important for the process of ripening [8]. Members of the PLE subgroup appeared to be involved in the process of ripening in both climacteric and non-climacteric fruits [8, 10,11,12,13]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.