Technology-based computer-aided design models have been used to predict the static and dynamic performance of ultrahigh-voltage (UHV) 4H-silicon carbide (SiC) P-i-N diodes, insulated-gate bipolar transistors (IGBTs), and gate turn- <sc xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">off</small> (GTO) thyristors designed for 20–50 kV blocking voltage capability. The simulated forward voltage drops of 20–50 kV device designs range between 3.1 and 5.6 V for P-i-N diodes, 4.2–10.0 V for IGBTs, and 3.4–7.8 V for GTO thyristors at 20 A/cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> for room temperature operation. Moreover, with a low switching frequency application (i.e., 150 Hz) in mind, the switching energy losses using a 30 kV SiC GTO thyristor design are approximately E <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">ON</sub> /E <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">OFF</sub> _ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">GTO</sub> = 268/640 mJ, E <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">ON</sub> /E <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">OFF</sub> _ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">FWD</sub> = 388/6 mJ diode recovery losses, and <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">E</i> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">ON</sub> / <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">E</i> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">OFF</sub> _ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">SNUB</sub> = 954/22 mJ snubber component losses. The corresponding values for an SiC IGBT design are <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">E</i> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">ON</sub> / <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">E</i> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">OFF</sub> _ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">IGBT</sub> = 983/748 mJ, both operated at 448 K, <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">τ<sub>A</sub></i> = 20 μs, and with 30 A/cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> . The simulation output is used in a benchmark evaluation for a 1 GW, 640 kV application case, employing modular multilevel high-power converter legs comprising series-connected UHV SiC devices and state-of-the-art 4.5 kV Si bi-mode insulated-gate transistors. It is concluded that the high-voltage SiC power electronic building blocks present promising alternatives to existing high-voltage Si device counterparts in terms of system compactness and efficiency.