AbstractThe integration of hydrogen into natural gas infrastructure presents a viable strategy for mitigating greenhouse gas emissions and advancing toward carbon neutrality. This study investigates the combustion characteristics and emissions profiles of hydrogen-enriched natural gas mixtures, specifically focusing on the composition of Russian pipeline natural gas. A comprehensive mathematical model was developed to predict emission concentrations and simulate fuel mixture combustion using MATLAB Simulink software. This versatile model facilitates further analysis within the MATLAB ecosystem. The simulation results demonstrate a significant correlation between the hydrogen content in the natural gas mixture and the resulting heat power output. With a constant fuel consumption rate, a notable decrease in heat power was observed as the hydrogen concentration increased, reaching a maximum reduction of 44.9% at a 45% hydrogen content. These findings underscore the feasibility of partially substituting natural gas with hydrogen, while also highlighting the necessity for increased fuel flow rates to maintain equivalent power output levels. This poses additional challenges for natural gas grid operators, necessitating infrastructure adaptations to accommodate higher fuel demands. The insights gained from this research contribute to the growing body of knowledge surrounding hydrogen integration in the energy sector, offering valuable implications for decarbonization strategies and the optimization of natural gas infrastructure.
Read full abstract