Abstract
With the increasing share of renewable energy generation and the integration of large-scale electric vehicles (EVs) into the grid, the reasonable charging and discharging scheduling of electric vehicles is essential for the stable operation of power grid. Therefore, this paper proposes a bi-objective optimal scheduling strategy for microgrids based on the participation of electric vehicles in vehicle-to-grid technology (V2G) mode. Firstly, the system structure for electric vehicles participating in the charging and discharging schedule was established. Secondly, a bi-objective optimization model was formulated, considering load mean square error and user charging cost. A heuristic method was employed to handle constraints related to system energy balance and equipment output. Then, the Monte Carlo method was employed to simulate electric vehicle loads and to facilitate the generation of and reduction in scenario scenes. Finally, the model was solved using an improved multi-objective barebones particle swarm optimization algorithm. The simulation results show that the proposed scheduling strategy has a lower charging cost (CNY 11,032.4) and lower load mean square error (12.84 × 105 kW2) than the strategy employed in the comparison experiment, which ensures the economic and stable operation of the microgrid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.