This research paper examined the operational performance and greenhouse gas (GHG) emissions of an existing gas treatment plant. Extensive data collection and analysis were undertaken to assess energy consumption and emissions and identify major emitter units. A GHG emission inventory was developed, and a benchmarking analysis was conducted. The gap analysis revealed excessive emissions, leading to the identification of potential GHG abatement alternatives for the turbo compressor and stabilizer heater. Technical feasibility assessments and economic evaluations were performed for the implementation of waste heat recovery systems, specifically an absorption chiller and a hot oil-driven re-boiler. The results demonstrated significant energy savings, emission reduction, and positive financial returns. The economic evaluation of the abatement opportunities revealed an estimated annual savings of $229,287 US with a simple payback period (SPBP) of 2.96 years and an internal rate of return (IRR) of 32%/year for the absorption chiller. The re-boiler heat system showed an estimated annual savings of $209,456 US with an SPBP of 5.14 years and an IRR of 14%/year. The total investment for both opportunities amounted to $1,755,773 US, with a total annual savings of $438,743 US. The combined SPBP for the opportunities was 4 years, with an IRR of 21%/year. Sensitivity analyses demonstrated the absorption chiller’s financial viability, while the hot oil-driven re-boiler opportunity proved more sensitive to variations in investment costs and savings. Therefore, it is recommended to implement both opportunities together.
Read full abstract