A new phenanthridine-based multifunctional chemosensor (L), was synthesised via a green synthetic route and characterised using FT-IR, NMR and HRMS analysis. The sensing application of L towards metal ions in both solution and solid-state was studied using UV–vis and fluorescence spectroscopy, which exhibits dual-sensing behaviour for Th4+ and Hg2+ ions with good recyclability. In aqueous acetonitrile, L showed rapid response for the detection of environmental toxic metal ions and has a very low analytical detection limit of 125.5 pM and 1.94 nM for Th4+ and Hg2+ions respectively, which is remarkably lower than the World Health Organization standard. The cation binding property of the L with Th4+ and Hg2+ions was investigated by Job plot, 1H NMR titration, HR-MS and DFT calculation. The in-situ formed ensemble L-Hg2+ was further applied in the naked-eye detection of Cys (Cystine) and His (Histidine) over other common amino acids. The utility of L for real-time detection of Hg2+ and Th4+ ions was explored in various sources of environmental water samples, test paper strips, fingerprint imaging, fluorescent ink and smartphone-assisted sensing techniques, demonstrating the promising on-site visualization of the probe in controlling the toxicity levels in wastewater sources without resorting to expensive instruments.
Read full abstract