Abstract

Lipase-assisted catalytic esterification reactions have been concentrated on due to their green synthetic route for cinnamate acetate. In this paper, a high thermal stable Al-MOF (DUT-5) was chosen as a carrier to immobilize Porcine pancreatic lipase (PPL), and the resulting composites of PPL@DUT-5 were then employed in the catalytic transesterification reaction of cinnamyl alcohol and vinyl acetate. The adsorption conditions of PPL on the surface of DUT-5 were varied to optimize PPL loading uptakes, the adsorption kinetics were analyzed to explore the adsorption behavior of PPL on the DUT-5. In the catalytic transesterification reaction, the resulting PPL@DUT-5 represents the prominent enhanced catalytic stability under a varied reaction condition but with a higher catalytic activity, such as under the relative wide optimum pH value and at the increased operation temperature. And, the good reusability of the PPL@DUT-5 in cyclic catalytic processes highlights their prospect applications in the practical organic conversion reactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call