Abstract

Graphene-based adsorbent was prepared by adopting a green synthetic route via the chemical exfoliation of graphite and low-temperature thermal activation. Prepared reactive graphene (RG) was characterized through various techniques, and its adsorption capabilities for textile dye removal were investigated for Acid Blue-93 (AB) and Reactive Red-195 (RR) under different operational conditions. The dye sorption equilibrium and mechanism were comprehensively studied using isotherm and kinetic models and compared statistically to explain the sorption behavior. Results show AB and RR adsorption by RG attains equilibrium in 60min and 70min, with a high sorption quantity of 397mgg-1 and 262mgg-1 (initial dye concentration of 100mg L-1), respectively. The dye sorption anticipates that the high surface area (104.52 m2 gm-1) and constructed meso-macroporous features of RG facilitated the interaction between the dye molecules and graphitic skeleton. The R-P isotherm fitted the best of equilibrium data, having the least variance in residuals for both dyes (AB = 0.00031 and RR = 0.00047). The pseudo-second order model best fitted the kinetics of sorption on RG, with chemisorption being the predominant process delimiting step. The overall results promise the dye removal capability of RG to be an efficient adsorbent for azo-based dyes from textile effluents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.