The functionality and reliability of nanoscale multilayer devices and components are influenced by changes in stress and microstructure throughout fabrication, processing, and operation. NiV/B4C multilayers with a d-spacing of 3 nm were prepared by magnetron sputtering, and two groups of annealing experiments were performed. The stress, microstructure, and interface changes in NiV/B4C after annealing were investigated by grazing-incidence X-ray reflectometry (GIXR), grazing-incidence X-ray diffraction (GIXRD), X-ray diffuse scattering, and grazing-incidence small-angle X-ray scattering (GISAXS). The temperature dependence experiments revealed a gradual shift in the multilayer stress from compression to tension during annealing from 70 °C to 340 °C, with the stress approaching near-zero levels between 70 °C and 140 °C. The time-dependent experiments indicated that most of the stress changes occurred within the initial 10 min, which showed that prolonged annealing was unnecessary. Combining the X-ray diffraction and X-ray scattering measurements, it was found that the changes in the thickness, interface roughness, and lateral correlation length, primarily due to crystallization, drove the changes in stress and microstructure.
Read full abstract