Fire-induced forest loss has substantially increased worldwide over the last decade. In China, the connection between forest loss and frequent fires on a national scale remains largely unexplored. In this study, we used a data set for a time-series of forest loss from the Global Forest Watch and for a MODIS-derived burned area for 2003–2015 to ascertain variations in forest loss and to explore its relationship with forest fires (represented by burned areas) at the country- and forest-zone levels. We quantified trends in forest loss during 2003–2015 using linear regression analysis and assessed the relation between forest loss and burned areas using Spearman’s correlation. Forest loss increased significantly (264.8 km2 a−1; R2 = 0.54, p < 0.01) throughout China, with an average annual increase of 11.4% during 2003–2015. However, the forest loss trend had extensive spatial heterogeneity. Forest loss increased mainly in the subtropical evergreen broadleaf forest zone (315.0 km2 a−1; R2 = 0.69, p < 0.01) and tropical rainforest zone (38.8 km2 a−1; R2 = 0.66, p < 0.01), but the loss of forest decreased in the cold temperate deciduous coniferous forest zone (− 70.8 km2 year−1; R2 = 0.75, p < 0.01) and the temperate deciduous mixed broadleaf and coniferous forest zone (− 14.4 km2 a−1; R2 = 0.45, p < 0.05). We found that 1.0% of China’s area had a significant positive correlation (r ≥ 0.55, p < 0.05) with burned areas and 0.3% had a significant negative correlation (r ≤ − 0.55, p < 0.05). In particular, forest loss had a significant positive relationship with the burned area in the cold temperate deciduous coniferous forest zone (16.9% of the lands) and the subtropical evergreen broadleaf forest zone (7.8%). These results provide a basis for future predictions of fire-induced forest loss in China.