For many high-precision applications such as filtering, sensing, and photodetection, active control of resonant responses of metasurfaces is crucial. Herein, we demonstrate that active control of resonant asymmetric transmission can be realized based on the topological edge state (TES) of an ultra-thin G e 2 S b 2 T e 5 (GST) film in a photonic crystal grating (PCG). The PCG is composed of two pairs of one-dimensional photonic crystals (PCs) separated by a GST film. The phase change of the GST film re-distributes the field distributions of the PCG; thus active control of narrowband asymmetric transmission can be achieved due to the switch of the on-off state of the TES. According to multipole decompositions, the appearance and disappearance of the synergistically reduced dipole modes are responsible for the high-contrast asymmetric transmission of the PCG. In addition, the asymmetric transmission performances are robust to the variation of structural parameters, and good unidirectional transmission performances with a high peak transmission and high contrast ratio can be balanced, as the layer number of the two PCs is set as four. By changing the crystallization fraction of GST, the peak transmission and peak contrast ratio of asymmetric transmission can be flexibly tuned with the resonance locations kept almost the same.
Read full abstract