During the period 1990 to 1995, experimental programs using high‐resolution geophysics at several Australian operating mines and advanced evaluation projects were undertaken. The primary aim of those programs was to investigate the application of geophysical technology to improving the precision and economics of the ore evaluation and extraction processes. Geophysical methods used for this purpose include: 1) borehole geophysical logging to characterize ore and rock properties more accurately for improved correlations between drill holes, quantification of resource quality, and geotechnical information. 2) imaging techniques between drill holes to map structure directly or to locate geotechnical problems ahead of mining. 3) high‐resolution surface methods to map ore contacts and variations in ore quality, or for geotechnical requirements. In particular, the use of geophysics during evaluation of the Century zinc deposit in northern Australia demonstrated the potential value of these methods to the problems of defining the lateral and vertical extent of ore, quantitative density determination, prediction of structure between drill holes, and geotechnical characterization of the deposit. An analysis of the potential benefit of using a combination of borehole geophysical logging and imaging suggested that a more precise structural evaluation of the deposit could be achieved at a cost of several million dollars less than the conventional evaluation approach based on analysis from diamond drill‐hole logging and interpolation alone. The use of geophysics for the Century evaluation also provided substance to the possibility of using systematic geophysical logging of blast holes as an integral part of the ore extraction process. Preliminary tests indicate that ore boundaries can be determined to a resolution of several centimeters, and ore grade can be estimated directly to a usable accuracy. Applying this approach routinely to production blast holes would yield potential benefits of millions of dollars annually through improved timeliness and accuracy of ore boundary and quality data, decreased dilution, and improved mill performance. Although the indications of substantial benefits resulting from the appropriate and timely use of geophysics at Rio Tinto’s mining operations are positive, some challenges remain. These relate largely to the appropriate integration of the technology with the mining process, and acceptance by the mine operators of the economic value of such work. Until the benefits are demonstrated clearly over time, the use of geophysics as a routine component of evaluation and mining is likely to remain at a low level.
Read full abstract