Unmanned aerial vehicle (UAV) technology has overcome the limitations of conventional construction management methods using advanced and automated visualization and 3D reconstruction modeling techniques. Although the mapping techniques and reconstruction modeling software can generate real-time and high-resolution descriptive textural, physical, and spatial data, they may fail to develop an accurate and complete 3D model of the construction site. To generate a quality 3D reconstruction model, the construction manager must optimize the trade-offs among three major software-selection factors: functionalities, technical capabilities, and the system hardware specifications. These factors directly affect the robust 3D reconstruction model of the construction site and objects. Accordingly, the purpose of this research was to apply nine well-established 3D reconstruction modeling software tools (DroneDeploy, COLMAP, 3DF+Zephyr, Autodesk Recap, LiMapper, PhotoModeler, 3D Survey, AgiSoft Photoscan, and Pix4D Mapper) and compare their performances and reliabilities in generating complete 3D models. The research was conducted in an eco-home building at the University of Technology, Malaysia. A series of regression analyses were conducted to compare the performances of the selected 3D reconstruction modeling software in alignment and registration, distance computing, geometric measurement, and plugin execution. Regression analysis determined that among the software programs, LiMapper had the strongest positive linear correlation with the ground truth model. Furthermore, the correlation analysis showed a statistically significant p-value for all software, except for 3D Survey. In addition, the research found that Autodesk Recap generated the most-robust and highest-quality dense point clouds. DroneDeploy can create an accurate point cloud and triangulation without using many points as required by COLMAP and LiMapper. It was concluded that most of the software is robustly, positively, and linearly correlated with the corresponding ground truth model. In the future, other factors involving software selection should be studied, such as vendor-related, user-related, and automation factors.