Abstract

AimThe aim of the study was to assess the effect of implant placement depth on stress distribution in bone around a platform-switched and Morse taper dental implants placed at the equi-crestal and 1 mm and 2 mm sub-crestal levels in a D3 bone using the 3D finite element analysis.MethodologyA mechanical model of a partially edentulous maxilla was generated from a computerized tomography (CT) scan of an edentulous patient, as it can give exact bony contours of cortical bone. Also, from accurate geometric measurements obtained from the manufacturer, 3D models of Morse taper and platform-switched implants were manually drawn. The implant and bone models were then superimposed to simulate implant insertion in bone. Three implant positioning levels such as the equi-crestal, 1 mm sub-crestal, and 2 mm sub-crestal models were created, and meshing was done to create the number of elements for distribution of applying loads. The elastic properties of cortical bone and implant, such as Young's modulus and Poisson's ratio (µ), were determined. A load (axial and oblique) of 200N that simulated masticatory force was applied.ResultsOn comparing stresses within the bone around the equi-crestal and 1 mm and 2 mm sub-crestal implants, it was observed that the maximum stresses were seen within cortical bone around the equi-crestally placed implant (21.694), the least in the 2 mm sub-crestally placed implant (18.85), and intermediate stresses were seen within the 1 mm sub-crestally placed implant (18.876).ConclusionSub-crestal (1-2mm) placement of a Morse taper and a platform-switched implant is recommended for long-term success, as maximum von Mises stresses were found within cortical bone around the equi-crestal implant followed by the 1 mm sub-crestal implant and then the 2 mm sub-crestal implant.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.