Abstract

Modern electronic devices consist of several semiconductor layers where each layer exhibits unique carrier transport properties that can be represented by a unique mobility characteristic. To date, the mobility spectrum analysis technique is the main approach that has been developed and applied to the analysis of conductivity mechanisms of multi-carrier semiconductor structures and devices. Currently, there are no theoretical calculations of the mobility distribution in semiconductor structures or devices and specifically in MOSFET devices. In this article, we present a theoretical study of the electron mobility distribution in planar fully-depleted silicon-on-insulator (FD-SOI) transistors employing quantum mechanical modelling. The simulation results indicate that electronic transport in the 10 nm thick Si channel layer at room-temperature is due to two distinct and well-defined electron species for channel length varying from 50 nm to 200 nm. The two electron mobility distributions provide clear evidence of sub-band modulated transport in 10-nm thick Si planar FD-SOI MOSFETs that are associated with primed and non-primed valleys of silicon. The potential of the top gate electrode has been modulated, and thus only the top channel inversion-layer electron population transport parameters have been investigated employing self-consistent non-equilibrium Green’s function (NEGF)–Poisson numerical calculations. The numerical framework presented can be used to interpret experimental results obtained by magnetic-field dependent geometrical magnetoresistance measurements and mobility spectrum analysis, and provides greater insight into electron mobility distributions in nanostructured FET devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.