A central question in insect chemoreception is whether signaling occurs via G-proteins. Two families of seven-transmembrane-domain chemoreceptors, the odor (Or) and gustatory receptor (Gr) families, have been identified in Drosophila (Clyne et al., 1999, 2000; Vosshall et al., 1999). Ors mediate odor responses, whereas two Grs, Gr21a and Gr63a, mediate CO2 response (Hallem et al., 2004; Jones et al., 2007; Kwon et al., 2007). Using single-sensillum recordings, we systematically investigate the role of Galpha proteins in vivo, initially with RNA interference constructs, competitive peptides, and constitutively active Galpha proteins. The results do not support a role for Galpha proteins in odor sensitivity. In parallel experiments, manipulations of Galpha(q), but not other Galpha proteins, affected CO2 response. Transient, conditional, and ectopic expression analyses consistently supported a role for Galpha(q) in the response of CO2-sensing neurons, but not odor-sensing neurons. Genetic mosaic analysis confirmed that odor responses are normal in the absence of Galpha(q). Ggamma30A is also required for normal CO2 response. The simplest interpretation of these results is that Galpha(q) and Ggamma30A play a role in the response of CO2-sensing neurons, but are not required for Or-mediated odor signaling.
Read full abstract