Abstract

Establishment of apical-basal cell polarity has emerged as an important process during development, and the Crumbs complex is a major component of this process in Drosophila. By comparison, little is known about the role of Crumbs (Crb) proteins in vertebrate development. We show that the FERM protein Mosaic Eyes (Moe) is a novel regulatory component of the Crumbs complex. Moe coimmunoprecipitates with Ome/Crb2a and Nok (Pals1) from adult eye and in vitro interaction experiments suggest these interactions are direct. Morpholino knockdown of ome/crb2a phenocopies the moe mutations. Moe and Crumbs proteins colocalize apically and this apical localization requires reciprocal protein function. By performing genetic mosaic analyses, we show that moe- rod photoreceptors have greatly expanded apical structures, suggesting that Moe is a negative regulator of Crumbs protein function in photoreceptors. We propose that Moe is a crucial regulator of Crumbs protein cell-surface abundance and localization in embryos.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.