We give 2 widest Mehler's formulas for the univariate complex Hermite polynomials , by performing double summations involving the products and . They can be seen as the complex analogues of the classical Mehler's formula for the real Hermite polynomials. The proof of the first one is based on a generating function giving rise to the reproducing kernel of the generalized Bargmann space of level m. The second Mehler's formula generalizes the one appearing as a particular case of the so‐called Kibble‐Slepian formula. The proofs we present here are direct and more simpler. Moreover, direct applications are given and remarkable identities are derived.
Read full abstract