Abstract
We employ the recently established basis (the two-variable Hermite-Gaussian function) of the generalized Bargmann space (BGBS) [Phys. Lett. A303, 311 (2002)] to study the generalized form of the fractional Fourier transform (FRFT). By using the technique of integration within an ordered product of operators and the bipartite entangled-state representations, we derive the generalized generating function of the BGBS with which the undecomposable kernel of the two-dimensional FRFT [also named complex fractional Fourier transform (CFRFT)] is obtained. This approach naturally shows that the BGBS is just the eigenfunction of the CFRFT.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.