Abstract
By a quantum mechanical analysis of the additive rule Fα[Fβ[f]]=Fα+β[f], which the fractional Fourier transformation (FrFT) Fα[f] should satisfy, we reveal that the position-momentum mutual-transformation operator is the core element for constructing the integration kernel of FrFT. Based on this observation and the two mutually conjugate entangled-state representations, we then derive a core operator for enabling a complex fractional Fourier transformation (CFrFT), which also obeys the additive rule. In a similar manner, we also reveal the fractional transformation property for a type of Fresnel operator.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.