Abstract

We perform a quantization of the loop gravity phase space purely in terms of spinorial variables, which have recently been shown to provide a direct link between spin network states and simplicial geometries. The natural Hilbert space to represent these spinors is the Bargmann space of holomorphic square-integrable functions over complex numbers. We show the unitary equivalence between the resulting generalized Bargmann space and the standard loop quantum gravity Hilbert space by explicitly constructing the unitary map. The latter maps SU(2)-holonomies, when written as a function of spinors, to their holomorphic part. We analyze the properties of this map in detail. We show that the subspace of gauge invariant states can be characterized particularly easy in this representation of loop gravity. Furthermore, this map provides a tool to efficiently calculate physical quantities since integrals over the group are exchanged for straightforward integrals over the complex plane.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.