Background The digital era has witnessed an escalating dependence on digital platforms for news and information, coupled with the advent of “deepfake” technology. Deepfakes, leveraging deep learning models on extensive data sets of voice recordings and images, pose substantial threats to media authenticity, potentially leading to unethical misuse such as impersonation and the dissemination of false information. Objective To counteract this challenge, this study aims to introduce the concept of innate biological processes to discern between authentic human voices and cloned voices. We propose that the presence or absence of certain perceptual features, such as pauses in speech, can effectively distinguish between cloned and authentic audio. Methods A total of 49 adult participants representing diverse ethnic backgrounds and accents were recruited. Each participant contributed voice samples for the training of up to 3 distinct voice cloning text-to-speech models and 3 control paragraphs. Subsequently, the cloning models generated synthetic versions of the control paragraphs, resulting in a data set consisting of up to 9 cloned audio samples and 3 control samples per participant. We analyzed the speech pauses caused by biological actions such as respiration, swallowing, and cognitive processes. Five audio features corresponding to speech pause profiles were calculated. Differences between authentic and cloned audio for these features were assessed, and 5 classical machine learning algorithms were implemented using these features to create a prediction model. The generalization capability of the optimal model was evaluated through testing on unseen data, incorporating a model-naive generator, a model-naive paragraph, and model-naive participants. Results Cloned audio exhibited significantly increased time between pauses (P<.001), decreased variation in speech segment length (P=.003), increased overall proportion of time speaking (P=.04), and decreased rates of micro- and macropauses in speech (both P=.01). Five machine learning models were implemented using these features, with the AdaBoost model demonstrating the highest performance, achieving a 5-fold cross-validation balanced accuracy of 0.81 (SD 0.05). Other models included support vector machine (balanced accuracy 0.79, SD 0.03), random forest (balanced accuracy 0.78, SD 0.04), logistic regression, and decision tree (balanced accuracies 0.76, SD 0.10 and 0.72, SD 0.06). When evaluating the optimal AdaBoost model, it achieved an overall test accuracy of 0.79 when predicting unseen data. Conclusions The incorporation of perceptual, biological features into machine learning models demonstrates promising results in distinguishing between authentic human voices and cloned audio.