This paper provides a fundamental understanding of “false friend” formation, i.e., hidden defects associated with lack of fusion, using an experimental setup that allowed an insight into the processing zone based on high-speed synchrotron X-ray imaging. The setup enabled the welding of a lap joint of AISI 304 high-alloy steel sheets (X5CrNi18-10/1.4301), with the ability to adjust different gap heights between top and bottom sheet (up to 0.20 mm) and to acquire high-speed X-ray images at 100 kHz simultaneously with the welding process. On this basis, a time-resolved description of the “false friend” formation can be provided by visualizing the interaction between keyhole and melt pool during laser welding and solidification processes within the gap area. The bridgeability of the gap was limited due to the gap height and insufficient melt supply leading to the solidification of the bridge. The distance between the solidified bridge and the keyhole increased with time, while the keyhole and melt pool dynamics initiated the formation of new melt bridges whose stability was defined by melt flow conditions, surface tension, and gap heights. The alternating formation and solidification of melt bridges resulted in entrapped areas of lacking fusion within the weld, i.e., “false friends.” Finally, based on the results of this study, a model concept is presented that concludes the main mechanisms of “false friend” formation.