Abstract
Many studies have focused on the impact of nitrogen deposition on plants, but due to technical limitations, research on the responses of forest canopy to manipulated nitrogen deposition is relatively scarce. Based on a canopy nitrogen addition (CN) platform, this study used laboratory analysis and unmanned aerial vehicle (UAV) observations to assess the impact of CN on the canopy traits of dominant tree species (Engelhardia roxburghiana, Schima superba, and Castanea henryi) in an evergreen broad-leaved forest in China. The results showed that nitrogen application at 25 kg N ha−1 y−1 (CN25) and 50 kg N ha−1 y−1 (CN50) significantly increased the actual net photosynthetic rate (An) of all the three tree species. CN25 significantly increased superoxide dismutase (SOD), catalase (CAT), and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activities in C. henryi. CN50 significantly increased the leaf area of all the three tree species and significantly reduced the leaf thickness of C. henryi, and significantly increased the POD and Rubisco activities in S. superba and C. henryi. CN significantly changed the number of forest gaps, but did not significantly change the area of forest gaps within the sample plots. CN25 significantly decreased the vertical projection area but increased the canopy flowering coverage of S. superba in dominant directions. CN25 and CN50 significantly increased the flowering coverage of C. henryi in favorable directions. It is found that under long-term (10-year) nitrogen addition, the balance between carbon fixation and antioxidant defense functions of E. roxburghiana may be broken down, but the carbon assimilation, antioxidant capacity and reproduction potential of S. superba and C. henryi may be well coordinated, which will have a potential impact on the species composition and ecological functions of the evergreen broad-leaved forest. This study may also provide scientific basis for forest management in the context of enhanced atmospheric nitrogen deposition.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have