Abstract
Although effects of atmospheric nitrogen (N) deposition on forest plants have been widely investigated, N interception and absorption effects by forest canopy should not be neglected. Moreover, how N deposition change the molecular biological process of understory dominant plants, which was easily influenced by canopy interception so as to further change physiological performance, remains poorly understood. To assess the effects of N deposition on forest plants, we investigated the effects of understory (UAN) and canopy N addition (CAN) on the transcriptome and physiological properties of Ardisia quinquegona, a dominant subtropical understory plant species in an evergreen broad-leaved forest in China. We identified a total of 7394 differentially expressed genes (DEGs). Three of these genes were found to be co-upregulated in CAN as compared to control (CK) after 3 and 6h of N addition treatment, while 133 and 3 genes were respectively found to be co-upregulated and co-downregulated in UAN as compared to CK. In addition, highly expressed genes including GP1 (a gene involved in cell wall biosynthesis) and STP9 (sugar transport protein 9) were detected in CAN, which led to elevated photosynthetic capacity and accumulation of protein and amino acid as well as decrease in glucose, sucrose, and starch contents. On the other hand, genes associated with transport, carbon and N metabolism, redox response, protein phosphorylation, cell integrity, and epigenetic regulation mechanism were affected by UAN, resulting in enhanced photosynthetic capacity and carbohydrates and accumulation of protein and amino acid. In conclusion, our results showed that the CAN compared to UAN treatment had less effects on gene regulation and carbon and N metabolism. Canopy interception of N should be considered through CAN treatment to simulate N deposition in nature.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have