Abstract The ultraviolet (UV) extinction feature at 2175 Å is ubiquitously observed in the Galaxy but is rarely detected at high redshifts. Here we report the spectroscopic detection of the 2175 Å bump on the sightline to the γ-ray burst (GRB) afterglow GRB 180325A at z = 2.2486, the only unambiguous detection over the past 10 years of GRB follow-up, at four different epochs with the Nordic Optical Telescope (NOT) and the Very Large Telescope (VLT)/X-shooter. Additional photometric observations of the afterglow are obtained with the Gamma-Ray burst Optical and Near-Infrared Detector (GROND). We construct the near-infrared to X-ray spectral energy distributions (SEDs) at four spectroscopic epochs. The SEDs are well described by a single power law and an extinction law with R V ≈ 4.4, A V ≈ 1.5, and the 2175 Å extinction feature. The bump strength and extinction curve are shallower than the average Galactic extinction curve. We determine a metallicity of [Zn/H] > −0.98 from the VLT/X-shooter spectrum. We detect strong neutral carbon associated with the GRB with equivalent width of W r(λ 1656) = 0.85 ± 0.05. We also detect optical emission lines from the host galaxy. Based on the Hα emission-line flux, the derived dust-corrected star formation rate is ∼46 ± 4 M ⊙ yr−1 and the predicted stellar mass is log M */M ⊙ ∼ 9.3 ± 0.4, suggesting that the host galaxy is among the main-sequence star-forming galaxies.
Read full abstract