Published in last 50 years
Articles published on Galactic Extinction
- Research Article
1
- 10.1111/j.1365-2966.2012.21883.x
- Nov 2, 2012
- Monthly Notices of the Royal Astronomical Society
- F M Jiménez-Esteban + 3 more
The observation of blank fields, defined as regions of the sky that are devoid of stars down to a given threshold magnitude, constitutes one of the most relevant calibration procedures required for the proper reduction of astronomical data obtained following typical observing strategies. In this work, we have used the Delaunay triangulation to search for deep blank fields throughout the whole sky, with a minimum size of 10 arcmin in diameter and an increasing threshold magnitude from 15 to 18 in the R band of the USNO-B Catalog of the United States Naval Observatory. The result is a catalogue with the deepest blank fields known so far. A short sample of these regions has been tested with the 10.4m Gran Telescopio Canarias, and it has been shown to be extremely useful for medium and large size telescopes. Because some of the regions found could also be suitable for new extragalactic studies, we have estimated the galactic extinction in the direction of each deep blank field. This catalogue is accessible through the Virtual Observatory tool TESELA, and the user can retrieve - and visualize using Aladin - the deep blank fields available near a given position in the sky.
- Research Article
52
- 10.1051/0004-6361/201219879
- Oct 31, 2012
- Astronomy & Astrophysics
- A Melandri + 36 more
The association of Type Ic SNe with long-duration GRBs is well established. We endeavor, through accurate ground-based observational campaigns, to characterize these SNe at increasingly high redshifts. We obtained a series of optical photometric and spectroscopic observations of the Type Ic SN2012bz associated with the Swift long-duration GRB120422A (z=0.283) using the 3.6-m TNG and the 8.2-m VLT telescopes. The peak times of the light curves of SN2012bz in various optical filters differ, with the B-band and i'-band light curves reaching maximum at ~9 and ~23 rest-frame days, respectively. The bolometric light curve has been derived from individual bands photometric measurements, but no correction for the unknown contribution in the near-infrared (probably around 10-15%) has been applied. Therefore, the present light curve should be considered as a lower limit to the actual UV-optical-IR bolometric light curve. This pseudo-bolometric curve reaches its maximum (Mbol = -18.56 +/- 0.06) at 13 +/- 1 rest-frame days; it is similar in shape and luminosity to the bolometric light curves of the SNe associated with z<0.2 GRBs and more luminous than those of SNe associated with XRFs. A comparison with the model generated for the bolometric light curve of SN2003dh suggests that SN2012bz produced only about 15% less 56Ni than SN2003dh, about 0.35 Msol. Similarly the VLT spectra of SN2012bz, after correction for Galactic extinction and for the contribution of the host galaxy, suggest comparable explosion parameters with those observed in SN2003dh (EK~3.5 x 10^52 erg, Mej~7 Msol) and a similar progenitor mass (~25-40 Msol). GRB120422A is consistent with the Epeak-Eiso and the EX,iso-Egamma,iso-E_peak relations. GRB120422A/SN2012bz shows the GRB-SN connection at the highest redshift so far accurately monitored both photometrically and spectroscopically.
- Research Article
102
- 10.1088/0004-637x/759/1/20
- Oct 12, 2012
- The Astrophysical Journal
- C S Kochanek + 2 more
ABSTRACT We use the progenitor of SN 2012aw to illustrate the consequences of modeling circumstellar dust using Galactic (interstellar) extinction laws that (1) ignore dust emission in the near-IR and beyond, (2) average over dust compositions, and (3) mischaracterize the optical/UV absorption by assuming that scattered photons are lost to the observer. The primary consequences for the progenitor of SN 2012aw are that both the luminosity and the absorption are significantly overestimated. In particular, the stellar luminosity is most likely in the range 104.8 < L */L ☉ < 105.0 and the star was not extremely massive for a Type IIP progenitor, with M * < 15 M ☉. Given the properties of the circumstellar dust and the early X-ray/radio detections of SN 2012aw, the star was probably obscured by an ongoing wind with to 10−5.0 M ☉ yr−1 at the time of the explosion, roughly consistent with the expected mass-loss rates for a star of its temperature (T * ≃ 3600+300 − 200 K) and luminosity. In the spirit of Galactic extinction laws, we supply simple interpolation formulae for circumstellar extinction by dusty graphitic and silicate shells as a function of wavelength (λ ⩾ 0.3 μm) and total (absorption plus scattering) V-band optical depth (τ V ⩽ 20). These do not include the contributions of dust emission, but provide a simple, physical alternative to incorrectly using interstellar extinction laws.
- Research Article
70
- 10.1088/0004-637x/759/1/6
- Oct 10, 2012
- The Astrophysical Journal
- M Elvis + 41 more
The "Cosmic Evolution Survey" (COSMOS) enables the study of the Spectral Energy Distributions (SEDs) of Active Galactic Nuclei (AGN) because of the deep coverage and rich sampling of frequencies from X-ray to radio. Here we present a SED catalog of 413 X-ray (\xmm) selected type 1 (emission line FWHM$>2000$ km s$^{-1}$) AGN with Magellan, SDSS or VLT spectrum. The SEDs are corrected for the Galactic extinction, for broad emission line contributions, constrained variability, and for host galaxy contribution. We present the mean SED and the dispersion SEDs after the above corrections in the rest frame 1.4 GHz to 40 keV, and show examples of the variety of SEDs encountered. In the near-infrared to optical (rest frame $\sim 8\mu m$-- 4000\AA), the photometry is complete for the whole sample and the mean SED is derived from detections only. Reddening and host galaxy contamination could account for a large fraction of the observed SED variety. The SEDs are all available on-line.
- Research Article
14
- 10.1088/0004-637x/758/2/85
- Oct 1, 2012
- The Astrophysical Journal
- Lian Tao + 4 more
We report on multiwavelength observations of the supersoft ultraluminous X-ray source (ULX) in NGC 247 made with the Chandra X-Ray Observatory and Hubble Space Telescope. We aligned the X-ray and optical images using three objects present on both and identified a unique, point-like optical counterpart to the ULX. The X-ray to optical spectrum is well fitted with an irradiated disk model if the extinction measured for Cepheids in NGC 247 is used. Assuming only Galactic extinction, the spectrum can be modeled as a standard thin accretion disk. Either result leads to the conclusion that a disk interpretation of the X-ray spectrum is valid, thus the source may be in the X-ray thermal state and contain an intermediate-mass black hole of at least 600 M☉. In contrast to other supersoft ULXs that are transient and exhibit a luminosity temperature relation inconsistent with a disk interpretation of the X-ray emission, the NGC 247 ULX has a relatively steady flux and all available X-ray data are consistent with emission from a disk in the thermal state.
- Research Article
34
- 10.1051/0004-6361/201218788
- Aug 29, 2012
- Astronomy & Astrophysics
- G Gavazzi + 7 more
We present Halpha3 (acronym for Halpha-alpha-alpha), an Halpha narrow-band imaging survey of ~400 galaxies selected from the HI Arecibo Legacy Fast ALFA Survey (ALFALFA) in the Local Supercluster, including the Virgo cluster. By using hydrogen recombination lines as a tracer of recent star formation, we aim to investigate the relationships between atomic neutral gas and newly formed stars in different environments (cluster and field), morphological types (spirals and dwarfs), and over a wide range of stellar masses (~10^7.5-10^11.5 Msun). We image in Halpha+[NII] all the galaxies that contain more than 10^7 Msun of neutral atomic hydrogen in the sky region 11^h < R.A. <16^h 4^o < Dec. <16^o; 350< cz <2000 km/s using the San Pedro Martir 2m telescope. This survey provides a complete census of the star formation in HI rich galaxies of the local universe. We present the properties of the galaxy sample, together with Halpha fluxes and equivalent widths. We find an excellent agreement between the fluxes determined from our images in apertures of 3 arcsec diameter and the fluxes derived from the SDSS spectral database. From the Halpha fluxes corrected for galactic and internal extinction and for [NII] contamination we derive the global star formation rates (SFRs).
- Research Article
29
- 10.1051/0004-6361/201118256
- Aug 1, 2012
- Astronomy & Astrophysics
- S Smajić + 3 more
Aims. We present the results of near-infrared (NIR) H+K European Southern Observatory SINFONI integral field spectroscopy (IFS) of the Seyfert 2 galaxy NGC 7172. We investigate the central 800 pc, concentrating on excitation conditions, morphology, and stellar content. NGC 7172 was selected from a sample of the ten nearest Seyfert 2 galaxies from the Veron-Cetty & Veron catalogue. All objects were chosen as test cases for adaptive optics (AO) assisted observations that allow a detailed study (at high spatial and spectral resolution) of the nuclear and host environments. NGC 7172 has a prominent dustlane crossing the central galaxy region from east to west, which makes it an ideal candidate to investigate the effect of obscuration by strong galactic extinction on (active) galaxies and their classification. Methods. The NIR is less influenced by dust extinction than optical light and is sensitive to the mass-dominating stellar populations. SINFONI integral field spectroscopy combines NIR imaging and spectroscopy and provides us with the opportunity to analyze several emission and absorption lines to investigate the stellar populations and ionization mechanisms over the 4′′ × 4′′ field of view (FOV). Results. We present emission and absorption line measurements in the central 800 pc of NGC 7172. The detection of [Sivi] and broad Paα and Brγ components are clear signs of an accreting super-massive black hole hiding behind the prominent dustlane at visible wavelengths. Hot temperatures of about 1300 K are indicative of a dusty torus in the nuclear region. Narrow components of Paα and Brγ enable us to make an extinction measurement. Our measures of the molecular hydrogen lines, hydrogen recombination lines, and [Fe ii] indicate that the excitation of these lines is caused by an active galactic nucleus. The central region of the galactic disk is predominantly inhabited by gas, dust, and an old K-M type giant stellar population. The gaseous, molecular, and stellar velocity maps show a related disturbed disk structure and similar velocities. Conclusions. We find evidence of nuclear activity located behind the prominent dustlane crossing the central region of the galaxy. The nucleus of NGC 7172, which is optically classified as a Seyfert 2 nucleus without any trace of broad emission lines, is a Seyfert 1 nucleus either surrounded by a molecular dust torus or hidden behind the strong galactic extinction. Our observation provides support for the unified model scheme. However, an evolutionary scenario cannot be ruled out by our observation.
- Research Article
36
- 10.1088/0067-0049/201/2/35
- Aug 1, 2012
- The Astrophysical Journal Supplement Series
- David L Nidever + 2 more
We provide new, high-resolution A(Ks) extinction maps of the heavily reddened Galactic midplane based on the Rayleigh-Jeans Color Excess ("RJCE") method. RJCE determines star-by-star reddening based on a combination of near- and mid-infrared photometry. The new RJCE-generated maps have 2 x 2 arcmin pixels and span some of the most severely extinguished regions of the Galaxy -- those covered with Spitzer+IRAC imaging by the GLIMPSE-I, -II, -3D, and Vela-Carina surveys, from 256<l<65 deg and, in general, for |b| <= 1-1.5 deg (extending up to |b|<=4 deg in the bulge). Using RJCE extinction measurements, we generate dereddened color-magnitude diagrams and, in turn, create maps based on main sequence, red clump, and red giant star tracers, each probing different distances and thereby providing coarse three-dimensional information on the relative placement of dust cloud structures. The maps generated from red giant stars, which reach to ~18-20 kpc, probe beyond most of the Milky Way extinction in most directions and provide close to a "total Galactic extinction" map -- at minimum they provide high angular resolution maps of lower limits on A(Ks). Because these maps are generated directly from measurements of reddening by the very dust being mapped, rather than inferred on the basis of some less direct means, they are likely the most accurate to date for charting in detail the highly patchy differential extinction in the Galactic midplane. We provide downloadable FITS files and an IDL tool for retrieving extinction values for any line of sight within our mapped regions.
- Research Article
3
- 10.1111/j.1365-2966.2012.20872.x
- Apr 23, 2012
- Monthly Notices of the Royal Astronomical Society
- Lidia Makarova + 2 more
We present a quantitative star formation history of the nearby dwarf galaxy UGCA 92. This irregular dwarf is situated in the vicinity of the Local Group of galaxies in a zone of strong Galactic extinction (IC 342 group of galaxies). The galaxy was resolved into stars with HST/ACS including old red giant branch. We have constructed a model of the resolved stellar populations and measured the star formation rate and metallicity as function of time. The main star formation activity period occurred about 8 - 14 Gyr ago. These stars are mostly metal-poor, with a mean metallicity [Fe/H] ~ -1.5 -- -2.0 dex. About 84 per cent of the total stellar mass was formed during this event. There are also indications of recent star formation starting about 1.5 Gyr ago and continuing to the present. The star formation in this event shows moderate enhancement from ~ 200 Myr to 300 Myr ago. It is very likely that the ongoing star formation period has higher metallicity of about -0.6 -- -0.3 dex. UGCA 92 is often considered to be the companion to the starburst galaxy NGC 1569. Comparing our star formation history of UGCA 92 with that of NGC 1569 reveals no causal or temporal connection between recent star formation events in these two galaxies. We suggest that the starburst phenomenon in NGC 1569 is not related to the galaxy's closest dwarf neighbours and does not affect their star formation history.
- Research Article
847
- 10.1088/0004-637x/750/2/99
- Apr 18, 2012
- The Astrophysical Journal
- J L Tonry + 13 more
The Pan-STARRS1 survey is collecting multi-epoch, multi-color observations of the sky north of declination -30 deg to unprecedented depths. These data are being photometrically and astrometrically calibrated and will serve as a reference for many other purposes. In this paper we present our determination of the Pan-STARRS photometric system: gp1, rp1, ip1, zp1, yp1, and wp1. The Pan-STARRS photometric system is fundamentally based on the HST Calspec spectrophotometric observations, which in turn are fundamentally based on models of white dwarf atmospheres. We define the Pan-STARRS magnitude system, and describe in detail our measurement of the system passbands, including both the instrumental sensitivity and atmospheric transmission functions. Byproducts, including transformations to other photometric systems, galactic extinction, and stellar locus are also provided. We close with a discussion of remaining systematic errors.
- Research Article
89
- 10.1051/0004-6361/201118065
- Feb 1, 2012
- Astronomy & Astrophysics
- M Koleva + 1 more
The spectral predictions of stellar population models are not as accurate in the ultra-violet (UV) as in the optical wavelength domain. One of the reasons is the lack of high-quality stellar libraries. The New Generation Stellar Library (NGSL), recently released,represents a significant step towards the improvement of this situation. To prepare NGSL for population synthesis, we determined the atmospheric parameters of its stars, we assessed the precision of the wavelength calibration and characterised its intrinsic resolution. We also measured the Galactic extinction for each of the NGSL stars. For our analyses we used ULySS, a full spectrum fitting package, fitting the NGSL spectra against the MILES interpolator. We find that the wavelength calibration is precise up to 0.1 px, after correcting a systematic effect in the optical range. The spectral resolution varies from 3{\AA} in the UV to 10{\AA} in the near-infrared (NIR), corresponding to a roughly constant reciprocal resolution R ~ 1000 and an instrumental velocity dispersion $\sigma_{ins}$ ~ 130 km/s. We derived the atmospheric parameters homogeneously. The precision for the FGK stars is 42K, 0.24 and 0.09 dex for Teff, logg and [Fe/H], respectively. The corresponding mean errors are 29K, 0.50 and 0.48 dex for theMstars, and for the OBA stars they are 4.5 percent, 0.44 and 0.18 dex. The comparison with the literature shows that our results are not biased.
- Research Article
6
- 10.1002/asna.201111632
- Jan 1, 2012
- Astronomische Nachrichten
- J Krełowski + 1 more
Abstract We have applied the method of investigating extinction curves using statistically meaningful samples that was proposed by us 25 years ago. The extensive data sets of the ANS (Astronomical Netherlands Satellite) and 2MASS (Two Micron All Sky Survey) were used, together with UBV photometry to create average extinction curves for samples of OB stars. Our results demonstrate that in the vast majority of cases the extinction curves are very close to the mean galactic extinction curve. Only a few objects were found to be obviously discrepant from the average. The latter phenomenon may be related to nitrogen chemistry in translucent interstellar clouds (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
- Research Article
- 10.1478/c1v89s1p002
- Sep 15, 2011
- Atti della Accademia Peloritana dei Pericolanti : Classe di Scienze Fisiche, Matematiche e Naturali
- C Cecchi‐Pestellini + 7 more
We present a model for interstellar extinction dust, in which we assume a bimodal distribution of extinction carriers, a dispersion of core–mantle grains, supplemented by a collection of PAHs in free molecular form. We use state–of–the–art methods to calculate the extinction due to macroscopic dust particles, and the absorption cross–sections of PAHs in four different charge states. While successfull for most of observed Galactic extinction curves, in few cases the model cannot provide reliable results. Paradoxically, these failures appear to be very promising, suggesting that the whole body of dust extinction features might be described within the cycle of carbon in the interstellar medium.
- Research Article
173
- 10.1111/j.1365-2966.2011.19351.x
- Sep 6, 2011
- Monthly Notices of the Royal Astronomical Society
- Ashley J Ross + 31 more
We investigate the effects of potential sources of systematic error on the angular and photometric redshift, zphot, distributions of a sample of redshift 0.4 < z < 0.7 massive galaxies whose selection matches that of the Baryon Oscillation Spectroscopic Survey (BOSS) constant-mass sample. Utilizing over 112 778 BOSS spectra as a training sample, we produce a photometric redshift catalogue for the galaxies in the Sloan Digital Sky Survey eight data release imaging area that, after masking, covers nearly one quarter of the sky (9913 deg2). We investigate fluctuations in the number density of objects in this sample as a function of Galactic extinction, seeing, stellar density, sky background, airmass, photometric offset and North/South Galactic hemisphere. We find that the presence of stars of comparable magnitudes to our galaxies (which are not traditionally masked) effectively removes area. Failing to correct for such stars can produce systematic errors on the measured angular autocorrelation function, w(θ), that are larger than its statistical uncertainty. We describe how one can effectively mask for the presence of the stars, without removing any galaxies from the sample, and minimize the systematic error. Additionally, we apply two separate methods that can be used to correct for the systematic errors imparted by any parameter that can be turned into a map on the sky. We find that failing to properly account for varying sky background introduces a systematic error on w(θ). We measure w(θ), in four zphot slices of width 0.05 between 0.45 < zphot < 0.65, and find that the measurements, after correcting for the systematic effects of stars and sky background, are generally consistent with a generic Λ cold dark matter model, at scales up to 60°. At scales greater than 3° and zphot > 0.5, the magnitude of the corrections we apply is greater than the statistical uncertainty in w(θ). The photometric redshift catalogue we produce will be made publicly available at http://portal.nersc.gov/project/boss/galaxy/photoz/.
- Research Article
178
- 10.1088/0004-637x/739/1/25
- Sep 1, 2011
- The Astrophysical Journal
- Steven R Majewski + 2 more
The Milky Way (MW) remains a primary laboratory for understanding the structure and evolution of spiral galaxies, but typically we are denied clear views of MW stellar populations at low Galactic latitudes because of extinction by interstellar dust. However, the combination of 2MASS near-infrared (NIR) and Spitzer-IRAC mid-infrared (MIR) photometry enables a powerful method for determining the line of sight reddening to any star: the sampled wavelengths lie in the Rayleigh-Jeans part of the spectral energy distribution of most stars, where, to first order, all stars have essentially the same intrinsic color. Thus, changes in stellar NIR-MIR colors due to interstellar reddening are readily apparent, and (under an assumed extinction law) the observed colors and magnitudes of stars can be easily and accurately restored to their intrinsic values, greatly increasing their usefulness for Galactic structure studies. In this paper we explore this "Rayleigh-Jeans Color Excess" (RJCE) method and demonstrate that use of even a simple variant of the RJCE method based on a single reference color, (H-[4.5um]), can rather accurately remove dust effects from previously uninterpretable 2MASS color-magnitude diagrams of stars in fields along the heavily reddened Galactic mid-plane, with results far superior to those derived from application of other dereddening methods. We also show that "total" Galactic midplane extinction looks rather different from that predicted using 100um emission maps from the IRAS/ISSA and COBE/DIRBE instruments as presented by Schlegel et al. Instead, the Galactic mid-plane extinction strongly resembles the distribution of 13-CO (J=1->0) emission. Future papers will focus on refining the RJCE method and applying the technique to understand better not only dust and its distribution, but the distribution of stars intermixed with the dust in the low-latitude Galaxy.
- Research Article
31
- 10.1088/0004-6256/142/3/74
- Aug 10, 2011
- The Astronomical Journal
- K Krisciunas + 29 more
We present optical and near-infrared photometry, as well as ground-based optical spectra and Hubble Space Telescope ultraviolet spectra, of the Type Ia supernova (SN) 2001ay. At maximum light the Si II and Mg II lines indicated expansion velocities of 14,000 km/sec, while Si III and S II showed velocities of 9,000 km/sec There is also evidence for some unburned carbon at 12,000 km/sec. SN 2001ay exhibited a decline-rate parameter Delta m_15(B) = 0.68 \pm 0.05 mag; this and the B-band photometry at t > +25 d past maximum make it the most slowly declining Type Ia SN yet discovered. Three of four super-Chandrasekhar-mass candidates have decline rates almost as slow as this. After correction for Galactic and host-galaxy extinction, SN 2001ay had M_B = -19.19 and M_V = -19.17 mag at maximum light; thus, it was not overluminous in optical bands. In near-infrared bands it was overluminous only at the 2-sigma level at most. For a rise time of 18 d (explosion to bolometric maximum) the implied Ni-56 yield was (0.58 \pm 0.15)/alpha M_Sun, with alpha = L_max/E_Ni probably in the range 1.0 to 1.2. The Ni-56 yield is comparable to that of many Type Ia supernovae. The "normal" Ni-56 yield and the typical peak optical brightness suggest that the very broad optical light curve is explained by the trapping of the gamma rays in the inner regions.
- Research Article
149
- 10.1088/0067-0049/195/2/13
- Jul 19, 2011
- The Astrophysical Journal Supplement Series
- Kyuseok Oh + 3 more
We present a new database of absorption and emission-line measurements based on the entire spectral atlas from the Sloan Digital Sky Survey (SDSS) 7th data release of galaxies within a redshift of 0.2. Our work makes use of the publicly available penalized pixel-fitting(pPXF) and gas and absorption line fitting (gandalf) IDL codes, aiming to improve the existing measurements for stellar kinematics, the strength of various absorption-line features, and the flux and width of the emissions from different species of ionised gas. Our fit to the stellar continuum uses both standard stellar population models and empirical templates obtained by combining a large number of stellar spectra in order to fit a subsample of high-quality SDSS spectra for quiescent galaxies. Furthermore, our fit to the nebular spectrum includes an exhaustive list of both recombination and forbidden lines. Foreground Galactic extinction is implicitly treated in our models, whereas reddening in the SDSS galaxies is included in the form of a simple dust screen component affecting the entire spectrum that is accompanied by a second reddening component affecting only the ionised gas emission. In order to check for systematic departures, we provide a quality assessment for our fit to the SDSS spectra in our sample. This quality assessment also allows the identification of objects with either problematic data or peculiar features. For example, based on the quality assessment, approximately 1% of the SDSS spectra classified as "galaxies" by the SDSS pipeline do in fact require additional broad lines to be matched, even though they do not show a strong continuum from an active nucleus, as do the SDSS objects classified as "quasars". Finally, we provide new spectral templates for galaxies of different Hubble types, obtained by combining the results of our spectral fit for a subsample of 452 morphologically selected objects.
- Research Article
87
- 10.1088/0004-637x/735/2/106
- Jun 22, 2011
- The Astrophysical Journal
- A J Drake + 34 more
We report on the discovery and observations of the extremely luminous optical transient CSS100217:102913+404220 (CSS100217 hereafter). Spectroscopic observations show this transient was coincident with a galaxy at redshift z=0.147, and reached an apparent magnitude of V ~ 16.3. After correcting for foreground Galactic extinction we determine the absolute magnitude to be M_V =-22.7 approximately 45 days after maximum light. Based on our unfiltered optical photometry the peak optical emission was L = 1.3 x 10^45 erg s^-1, and over a period of 287 rest-frame days had an integrated bolometric luminosity of 1.2 x 10^52 erg. Analysis of the pre-outburst SDSS spectrum of the source shows features consistent with a Narrow-line Seyfert1 (NLS1) galaxy. High-resolution HST and Keck followup observations show the event occurred within 150pc of nucleus of the galaxy, suggesting a possible link to the active nuclear region. However, the rapid outburst along with photometric and spectroscopic evolution are much more consistent with a luminous supernova. Line diagnostics suggest that the host galaxy is undergoing significant star formation. We use extensive follow-up of the event along with archival CSS and SDSS data to investigate the three most likely sources of such an event; 1) an extremely luminous supernova; 2) the tidal disruption of a star by the massive nuclear black hole; 3) variability of the central AGN. We find that CSS100217 was likely an extremely luminous type IIn supernova that occurred within range of the narrow-line region of an AGN. We discuss how similar events may have been missed in past supernova surveys because of confusion with AGN activity.
- Research Article
7
- 10.1111/j.1365-2966.2010.17571.x
- Oct 1, 2010
- Monthly Notices of the Royal Astronomical Society
- A Zonca + 3 more
We investigate the remarkable variety of IR-through-UV extinction curves by modelling extinction profiles with core-mantle grains and a collection of single and stacked polycyclic aromatic hydrocarbons. Such a model can closely reproduce the observed curves, by simply assuming a different ratio of the molecular component to classical dust, while leaving relatively unmodified the underlying global picture. In particular, we find that for extinction curve morphologies differing significantly from the average Galactic extinction, dust grain sizes exhibit a low-end cut-off at approximately 100 nm. An additional component of very small grains of sizes around 10 nm is required to model lines of sight whose extinctions are similar to the average Galactic curve. We conclude that to be accurately described, the so-called peculiar extinction curves do not need dust grains with exotic properties.
- Research Article
13
- 10.1051/0004-6361/200913953
- Sep 1, 2010
- Astronomy and Astrophysics
- J A Acosta-Pulido + 5 more
Context. NRAO 150 is one of the brightest radio and mm AGN sources on the northern sky. It has been revealed as an interesting source where to study extreme relativistic jet phenomena. However, its cosmological distance has not been reported so far, because of its optical faintness produced by strong Galactic extinction. Aims. Aiming at measuring the redshift of NRAO 150, and hence to start making possible quantitative studies from the source. Methods. We have conducted spectroscopic and photometric observations of the source in the near-IR, as well as in the optical. Results. All such observations have been successful in detecting the source. The near-IR spectroscopic observations reveal strong H$\alpha$ and H$\beta$ emission lines from which the cosmological redshift of NRAO 150 ($z=1.517\pm0.002$) has been determined for the first time. We classify the source as a flat-spectrum radio-loud quasar, for which we estimate a large super-massive black-hole mass $\sim5\times 10^{9} \mathrm{M_\odot}$. After extinction correction, the new near-IR and optical data have revealed a high-luminosity continuum-emission excess in the optical (peaking at $\sim2000$\,\AA, rest frame) that we attribute to thermal emission from the accretion disk for which we estimate a high accretion rate, $\sim30$\,% of the Eddington limit. Conclusions. Comparison of these source properties, and its broad-band spectral-energy distribution, with those of Fermi blazars allow us to predict that NRAO 150 is among the most powerful blazars, and hence a high luminosity -although not detected yet- $\gamma$-ray emitter.