The authors emphasize controlled shallow doping of GaAs by ion implantation and its limitations to state-of-the-art GaAs IC technology. The authors discuss the electrical activation behavior of implanted silicon in GaAs upon subsequent capless or silicon nitride capped rapid thermal annealing (RTA). It is demonstrated that atomic H diffuses into the implanted region of GaAs from a plasma-enhanced chemical vapor deposition Si/sub 3/N/sub 4/ cap during the deposition as well as during subsequent annealing, and the H retards the electrical activation kinetics of the implanted Si. Thru-Si cap dopant implants into GaAs have been studied to enhance dopant concentration in the surface region of the GaAs by recoil-implanted Si from the cap. Application of ion implantation to achieve buried-p layers in GaAs is also briefly discussed.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">></ETX>