In this paper, a detailed reliability analysis of metal-oxide conductive bridge memories (CBRAM) is presented. This paper mostly focuses on electrical characterization of metal-oxide CBRAM devices endurance, using optimized program/erase conditions, and data retention at high temperature. The addition of a thin metal-oxide layer (0.5 nm-thick Al <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> O <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> ) in the bottom of the GdO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">x</sub> memory stack significantly increases the R <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">OFF</sub> and the memory window (more than one decade), with improved endurance performance (up to 105 cycles) with respect to the monolayer CBRAM device. Meanwhile, high thermal stability was also achieved (two decades of window margin are constantly maintained beyond 24 h at 250 °C). The bilayer oxide GdOX/Al <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> O <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> CBRAM is a promising technology for potential future high density memory applications.