Abstract

In this paper, a detailed reliability analysis of metal-oxide conductive bridge memories (CBRAM) is presented. This paper mostly focuses on electrical characterization of metal-oxide CBRAM devices endurance, using optimized program/erase conditions, and data retention at high temperature. The addition of a thin metal-oxide layer (0.5 nm-thick Al <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> O <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> ) in the bottom of the GdO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">x</sub> memory stack significantly increases the R <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">OFF</sub> and the memory window (more than one decade), with improved endurance performance (up to 105 cycles) with respect to the monolayer CBRAM device. Meanwhile, high thermal stability was also achieved (two decades of window margin are constantly maintained beyond 24 h at 250 °C). The bilayer oxide GdOX/Al <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> O <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> CBRAM is a promising technology for potential future high density memory applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.