Noble gases, notably xenon, play a pivotal role in diverse high-tech applications. However, manufacturing xenon is an inherently challenging task, due to its unique properties and trace abundance in the Earth's atmosphere. Consequently, there is a pressing need for the development of efficient methods for the separation of noble gases. Using mild fluorographene chemistry, nitrogen-doped graphene (GNs) materials are synthesized with abundant aromatic regions and extensive nitrogen doping within the vacancies and holes of the aromatic lattice. Due to the organized interlayer "nanochannels", nitrogen functional groups, and defects within the two-dimensional (2D)structures, GNs exhibits effective selectivity for Xe over Kr at low pressure. This enhanced selectivity is attributed to the stronger binding affinity of Xe to GN compared to Kr. The adsorption is governed by London dispersion forces, as revealed by theoretical calculations using symmetry-adapted perturbation theory (SAPT). Investigation of other GNs differing in nitrogen content, surface area, and pore sizes underscores the significance of nitrogen functional groups, defects, and interlayer nanochannels over thesurface area in achieving superior selectivity. This work offers a new perspective on the design and fabrication of functionalized graphene derivatives, exhibiting superior noble gas storage and separation activity exploitable in gas production technologies.
Read full abstract