AbstractThis paper describes the evolution of an intense precipitation band associated with a relatively weak warm front observed during the Global Precipitation Measurement (GPM) Mission Cold Season Precipitation Experiment (GCPEx) over southern Ontario, Canada, on 18 February 2012. The warm frontal precipitation band went through genesis, maturity, and decay over a 5–6-h period. The Weather Research and Forecasting (WRF) Model nested down to 1-km grid spacing was able to realistically predict the precipitation band evolution, albeit somewhat weaker and slightly farther south than observed. Band genesis began in an area of precipitation with embedded convection to the north of the warm front in a region of weak frontogenetical forcing at low levels and a weakly positive to slightly negative moist potential vorticity (MPV*) from 900 to 650 hPa. A midlevel dry intrusion helped reduce the midlevel stability, while the precipitation band intensified as the low-level frontogenesis intensified in a sloping layer with the warm front. Aggregates of unrimed snow occurred within the band during early maturity, while more supercooled water and graupel occurred as the upward motion increased because of the frontogenetical circulation. As the low-level cyclone moved east, the low-level deformation decreased and the column stabilized for vertical and slantwise ascent, and the warm frontal band weakened. A WRF experiment turning off latent heating resulted in limited precipitation band development and a weaker warm front, while turning off latent cooling only intensified the frontal precipitation band as additional midlevel instability compensated for the small decrease in frontogenetical forcing.
Read full abstract