Spatial organization of biocatalytic activities is crucial to organisms to efficiently process complex metabolism. Inspired by this mechanism, artificial scaffold structures are designed to harbor functionally coupled biocatalysts, resulting in acellular materials that can complete multistep reactions at high efficiency and low cost. Substrate channeling is an approach for efficiency enhancement of multistep reactions, but fast diffusion of small molecule intermediates poses a major challenge to achieve channeling in vitro. Here, we explore how multistep biocatalysis is affected, and can be modulated, by cofactor-enzyme colocalization within a synthetic bioinspired material. In this material, a heterogeneous protein macromolecular framework (PMF) acts as a porous host matrix for colocalization of two coupled enzymes and their small molecule cofactor, nicotinamide adenine dinucleotide (NAD). After formation of the PMF from a higher order assembly of P22 virus-like particles (VLPs), the enzymes were partitioned into the PMF by covalent attachment and presentation on the VLP exterior. Using a collective property of the PMF (i.e., high density of negative charges in the PMF), NAD molecules were partitioned into the framework via electrostatic interactions after being conjugated to a polycationic species. This effectively controlled the localization and diffusion of NAD, resulting in substrate channeling between the enzymes. Changing ionic strength modulates the PMF-NAD interactions, tuning two properties that impact the multistep efficiency oppositely in response to ionic strength: cofactor partitioning (colocalization with the enzymes) and cofactor mobility (translocation between the enzymes). Within the range tested, we observed a maximum of 5-fold increase or 75% decrease in multistep efficiency as compared to free enzymes in solution, which suggest both the colocalization and the mobility are critical for the multistep efficiency. This work demonstrates utility of collective behaviors, exhibited by hierarchical bioassemblies, in the construction of functional materials for enzyme cascades, which possess properties such as tunable multistep biocatalysis.