Abstract

Immobilized enzymes are more robust and resistant to environmental changes than free enzymes in solution. More crucially, the immobilized enzyme systems' heterogeneity enables facile recovery of enzymes and products, multiple reuses, continuous enzymatic processes, quick reaction termination, and a more comprehensive range of bioreactor designs. This paper examines recent findings on enzyme immobilization using diverse approaches for various uses. The information gathered from the reactions catalyzed by the encapsulated tyrosinase provided a good view of hetero-biocatalysts in the phenol biosensor industries. This review proposes an effective method for immobilizing tyrosinase biomolecules into a silica aerogel matrix. Silica matrix has been utilized to encapsulate a wide range of biomolecules, mainly in sol-gel composites. We also discovered that silica aerogel synthesized from sol-gel method retains all the immobilized enzyme activity. The use of a silica matrix for enzyme immobilization, in conjunction with a moderate immobilization method, results in the successful retention of enzyme activity. Future studies should explore practical encapsulating approaches and inventively modified supports to enhance the commercialization of immobilized enzymes and offer fresh perspectives to the industrial sector.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call